

Applications of machine learning

in material research: an overview

Speaker: Shuo Feng Supervisor: Prof. Hongbiao Dong University of Leicester

- **1** Introduction to AI & machine learning
- 2 Some typical applications of machine learning
- 3 Challenges & solutions
- **4** Conclusions

AI, ML, DL

Conventional machine learning: manual feature engineering before training Deep learning (DL): learn directly from raw data without manual feature engineering

MSE data — AI models — PSP relationship

Predicting properties of steel plate

10000+ Real-factory data (excel data sheet) 1 hidden layer shallow neural network

High training & testing accuracy 0.99 (Pearson coefficient of prediction and real data)

Predicting solidification cracking susceptibility of stainless steel

	code	С	Si	Mn	Р	S	Cr	Ni	Мо	Ν	 v	в	Th	I	U	Ve	Strain	TCL	MCL	note
0	316NG-A	0.0100	0.48	1.61	0.024	0.019	17.33	10.62	2.09	0.0600	 0.0	0.0	3.18	100	12.0	4.23	4.0	1.50	0.19	ref03
1	316NG-B	0.0110	0.58	1.06	0.032	0.013	16.95	10.50	2.15	0.0780	 0.0	0.0	3.18	100	12.0	4.23	4.0	1.10	0.18	ref03
2	316NG-C	0.0100	0.46	1.09	0.021	0.001	17.40	11.50	2.88	0.1050	 0.0	0.0	3.18	100	12.0	4.23	4.0	0.90	0.15	ref03
484	K17	0.0140	0.33	1.73	0.026	0.007	17.90	9.50	0.00	0.0460	 0.0	0.0	5.00	70	16.0	1.25	1.2	0.24	Nan	ref17fig14
485	SUS304	0.0500	0.75	0.94	0.026	0.007	18.30	9.40	0.00	0.0160	 0.0	0.0	5.00	70	16.0	1.25	1.2	0.00	Nan	ref17fig14
486	SUS316	0.0700	0.66	1.01	0.020	0.006	16.70	12.40	2.38	0.0200	 0.0	0.0	5.00	70	16.0	1.25	1.2	1.47	Nan	ref17fig14

487 rows × 25 columns

Dataset size: 487*22 matrix Varestraint SCS test: include composition factors, processing parameters, and strain Total crack length (TCL): indicator for SCS 21 input: composition and test parameters 1 output: the indicator for solidification cracking susceptibility TCL (total crack length)

Ve

12 4.23

4.23

U

12

100

100

The University of Nottingham

Predicting glass-forming ability

Collect

Dataset size:

10440 entries

3 labels: None, Ribbon,

Defect detection

Image classification

Online, high speed (>10m/s), high temperature (>1000 °C) metal products' surface quality inspection

				-	2-class cl		
		# ima	ages	Defect type	Footuro		
	OK	24-	75		reature		
		247	, <u> </u>		Com		
	NOK		315	Roll Mark	LBP f		
		1411	887	Folds	LBP f		
			209	Cracks	CNN-SUR		
	TOTAL	388	36				

2-class classification (OK vs. NOK)

:	Feature extraction	Classifier	AUC								
	Commercial	Commercial (SVM)	0.88								
:	LBP features	SVM	0.92								
	LBP features	Random Forests	0.95								
	CNN-SURFIN (feature ex	0.997									

[1] https://computervision.tecnalia.com/en/

Defect detection

Object detection

Defect detection on an Xray image of a jet turbine blade

The training dataset did not contain any turbine blade images.

[1] FERGUSON M, AK R, LEE Y-T T, et al. 2018. Detection and Segmentation of Manufacturing Defects with Convolutional Neural Networks and Transfer Learning. arXiv preprint arXiv:1808.02518 [J].

UNITED KINGDOM · CHINA · MALAYSIA

Microstructure recognition

Image segmentation

UNITED KINGDOM · CHINA · MALAYSIA

S

- 1 Small dataset Data augment
- 2 Imbalanced data distribution Add weight to data
- 3 Noise in data Regularization
- 4 Poor interpretability of black box models Combine
- different models together & Visualization
- 5 Lack proper descriptors Exploit deep learning
- 6 poor accuracy pre-training

5

To improve generalization, add msw (mean square weight) to simple loss function $J(\theta)$ e.g. mse (mean square error)

Black box models ?

Exploit deep learning

5

PTR (periodical table representation):

mapping each composition to the periodical table forming a 9*18 gray image

Only composition is needed to predict glass-forming ability

Input \rightarrow 3*3/Conv/8 filter \rightarrow max pooling \rightarrow 3*3/Conv/16 filter \rightarrow max pooling \rightarrow 3*3/Conv/32 filter \rightarrow max pooling \rightarrow flatten \rightarrow FC \rightarrow **softmax**

CNN's average accuracy (10 cross validation): 96.7% (train)/95.8% (test)

Pretraining to improve accuracy

TED KINGDOM · CHINA · MALAYSIA

- 1 AI & Machine learning:
- a powerful universal tool for accelerating the development of materials;
- an important supplement to theory and experiments.
- 2 Though there are many challenges when solve materials problems using machine learning , solutions exist.

UNITED KINGDOM · CHINA · MALAYSIA

Thank you!

UNITED KINGDOM • CHINA • MALAYSIA